Hecke group algebras as degenerate affine Hecke algebras
نویسندگان
چکیده
The Hecke group algebra H W̊ of a finite Coxeter group W̊ , as introduced by the first and last author, is obtained from W̊ by gluing appropriately its 0-Hecke algebra and its group algebra. In this paper, we give an equivalent alternative construction in the case when W̊ is the classical Weyl group associated to an affine Weyl group W . Namely, we prove that, for q not a root of unity, H W̊ is the natural quotient of the affine Hecke algebra H(W )(q) through its level 0 representation. The proof relies on the following core combinatorial result: at level 0 the 0-Hecke algebra acts transitively on W̊ . Equivalently, in type A, a word written on a circle can be both sorted and antisorted by elementary bubble sort operators. We further show that the level 0 representation is a calibrated principal series representation M(t) for a suitable choice of character t, so that the quotient factors (non trivially) through the principal central specialization. This explains in particular the similarities between the representation theory of the classical 0-Hecke algebra and that of the affine Hecke algebra at this specialization. Résumé. L’algèbre de Hecke groupe H W̊ d’un groupe de Coxeter fini W̊ , introduite par le premier et le dernier auteur, est obtenue en recollant de manière appropriée son algèbre de Hecke dégénérée et son algèbre de groupe. Dans cet article, nous donnons une construction alternative dans le cas où W̊ est un groupe de Weyl associé à un groupe de Weyl affineW . Plus précisément, nous montrons que quand q n’est ni nul ni une racine de l’unité, H W̊ est le quotient naturel de l’algèbre de Hecke affine H(W )(q) dans sa représentation de niveau 0. Nous montrons de plus que la représentation de niveau 0 est une représentation de série principale calibrée M(t) pour un certain caractère t, de sorte que le quotient se factorise par la spécialisation centrale principale. Ce fait explique en particulier les similarités entre les théories des représentations de l’algèbre de Hecke dégénérée et de l’algèbre de Hecke affine sous cette spécialisation.
منابع مشابه
Double Affine Hecke Algebras for the Spin Symmetric Group
We introduce a new class (in two versions, Au and Bu) of rational double affine Hecke algebras (DaHa) associated to the spin symmetric group. We establish the basic properties of the algebras, such as PBW and Dunkl representation, and connections to Nazarov’s degenerate affine Hecke algebra and to a new degenerate affine Hecke algebra introduced here. We formulate a precise connection between t...
متن کامل2 1 A pr 1 99 8 LIE ALGEBRAS AND DEGENERATE AFFINE HECKE ALGEBRAS OF TYPE
We construct a family of exact functors from the BernsteinGelfand-Gelfand category O of sln-modules to the category of finite-dimensional representations of the degenerate affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained. Introduction The classical Frobenius...
متن کاملAffine and degenerate affine BMW algebras: The center
The degenerate affine and affine BMW algebras arise naturally in the context of SchurWeyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we...
متن کاملSpin Hecke Algebras of Finite and Affine Types
We introduce the spin Hecke algebra, which is a q-deformation of the spin symmetric group algebra, and its affine generalization. We establish an algebra isomorphism which relates our spin (affine) Hecke algebras to the (affine) Hecke-Clifford algebras of Olshanski and Jones-Nazarov. Relation between the spin (affine) Hecke algebra and a nonstandard presentation of the usual (affine) Hecke alge...
متن کاملLie Algebras and Degenerate Affine Hecke Algebras of Type A
We construct a family of exact functors from the BGG category O of representations of the Lie algebra sln(C) to the category of finite-dimensional representations of the degenerate (or graded) affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained.
متن کاملAffine and degenerate affine BMW algebras: Actions on tensor space
The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizer...
متن کامل